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INTRODLTCnION

1. Scope of the thesis

Careful experiments on boundary layer transition conducted in low tur-

bulence wind tunnels have resolved three stages in the breakdown of lam-

inar flow into turbulence: in the first stage, two-dimensional oscillations,

* commonly referred to as TS waves, appear and propagate in the direction of

~ the flow; in the second stage there appears a rapid three-dimensional defor-

mation of the oscillatory flow; and in the brief third stage high frequency,

small scale, quasi-random fluctuations appear and quickly lead the flow into

turbulence.

The recent analysis of the second stage based on a secondary instability

mechanism arising from a parametric resonance induced by the TS wave has

given results in quantitative agreement with experimental observations.

Using this approach, Herbert has studied the phenomenon in plane channel

flow and in a Blasius boundary layer [1-51. The -present-work studies the

effect of pressure gradients on the behavior of secondary instabilities. by

extending Herbert's analysis to the Falkner-Skan family of profiles, and

4, ~ develops a spatial formulation for disturbance growth to exactly match the

experimentally observed behavior./1 ,,..A ,
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2. Motivation

The study of secondary instabilities in the Falkner-Skan family of

i profiles, and hence in flows with pressure gradients, is a necessary step

towards the analysis of transition on objects with a non-constant surface

pressure distribution, foremost among which are airfoils. In high-

Reynolds-number aerodynamics the effect of transition is mainly a quantita-

tive change in drag. At low Reynolds number, and in combination with a

separating boundary layer in strong adverse pressure gradients, the location

of transition and the structure of the transitional flow can affect the global

flow field about the airfoil. Indeed, with the presence of the second stage of

transition in a boundary layer undergoing separation, the three-dimensional

disturbances can activate strong vortex stretching in the subsequent free

shear layer and cause breakdown into wall bound turbulence, forming a

separation bubble, while the absence of three dimensionality at separation

can allow periodical vortex pairing in the free shear layer and postpone tur-

bulence far enough downstream to cause the layer to permanently leave the

surface, creating a condition of stall over the airfoil. A visual representation

of this idea is given in figure 1. Hence in both high and low Reynolds

number external flows the presence and structure of transition is an impor-

tant phenomenon.

In the past eight decades, starting with the work of Orr and Sommer-

feld, extensive study has been done on the first stage (primary instabilities)

using the method of small oscillations. This approach yields correctly the

downstream location (critical Reynolds number) at which instability ini-

tiates, and describes accurately the oscillatory field at small amplitudes.

I k .l.
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However, it cannot model the evolution of the three-dimensional stage,

and, when used in conjunction with a e' transition criterion, it gives transi-

tional predictions erroneously independent of the upstream background dis-

turbance amplitudes.

The secondary instability model used in the present work overcomes

these shortcomings by incorporating the background disturbance amplitudes

-. as a parameter, and predicting in agreement with observation the form and

growth rate of secondary disturbances. We should mention, however, that
this model is not complete in itself, for it does not include a criterion for

determining the conditions at which the three-dimensional disturbances

* develop a "life of their own" by becoming independent from the parametric

" .. :excitation of the TS wave as a source of growth. This step, along with the

usage of actual airfoil boundary layer profiles in a downstream marching

transition prediction analysis, will be a future extension of the present work.

3. Experinntal view of boundary layer transition

In the study of boundary layer transition the majority of the experimen-

'. tal results have been obtained by using the vibrating ribbon technique of

Schubauer & Skramstad [6], in which the transition over a body immersed

in a low turbulence stream is initiated, and hence, controlled by the regu-

lated vibration of a tightly stretched ribbon. A more detailed account of

the following descriptions can be found in Klebanoff, Tidstrom, & Sargent

[7], Kachanov & Levchenko [81 , or in Saric et al. [0]. Let the streamwise,

• "" normal-to-plate, and spanwise directions compose an orthogonal system. In

a low noise environment a streakline observation in a boundary layer con-

[0
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taining a forced oscillation, introduced by a vibrating ribbon, might proceed

as follows:

0 At low oscillation amplitudes one observes traveling waves (TS waves)

invariant in the spanwise direction and propagating with the the flow.

Their amplitude harmlessly grows and decays in full accordance with

linear stability theory. Turbulence is delayed to high Renoylds

numbers.
'4

- When the amplitude of the TS wave is increased and a certain critical

combination of Reynolds number and amplitude is reached, the wave

0experiences a rapid spanwise periodic deformation. One can observe

spanwise alternating peaks and valleys which indicate the presence of

enhanced and reduced wave amplitude. The peak-valley structure is

staggered, repeating itself with twice the periodicity of the TS wave (see

Fig. 2a), and fixed hot wire measurements record subharmonic signals.

The rapid growth of the three-dimensional structure leads to the forma-

tion of concentrated shear layers at the peak positions. The highly

inflectional velocity distribution quickly breaks up into tertiary instabili-

ties.

At higher initial levels of the TS amplitude the above phenomenon is

0 repeated, but with a different structure; the peaks and valleys are

aligned, repeating themselves with the same frequency and periodicity

as the TS wave. A system of streamwise vortices appears simultane-

" ously with the aligned peaks and valleys (see Fig. 2b). Being first

observed in 1962 by Klebanoff et al. it is usual today to name this

0

• '.-.
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aligned peak-valley splitting as K-type breakdown. The disturbances

* - undergo pure spatial growth in all the above cases.

4. Review of past research

The three stages of boundary layer transition described have also been

observed in plane Poiseuille flow [10], in free shear layers [11], and in a

fluid with continuously stratified density (internal gravity waves) [12]. In all

three flows, researchers have tried to model the second stage of transition

using two approaches: weakly nonlinear models, or parametric instability

models. The latter one has given the most general and accurate results.

] Weakly nonlinear models appeared following the innovative work of

Landau. As discussed by Drazin and Reid [13], one can expand the velocity

field in weakly nonlinear analysis as

00
V. Aj(t)t;(x) + Complex Conj(

1 where { fi } is a complete set of functions satisfying the boundary condi-

.. tions, and is usually taken to be the wave type modes of the linear problem

(Orr-Sommerfeld or Squire modes in boundary layers, Helmholtz modes in

free shear layers). When the series is inserted into the Navier-Stokes equa-

tion the nonlinear convective term (v-7)v creates resonant wave interac-

tions. The interaction is, by computational necessity, limited to a finite

number of waves by truncating the series to a few terms, usually three.

Different weakly nonlinear models stem from different selections of modes

* in the truncated series. For compactness we introduce the wave vector

k = (a, ), where a is the streamwise wavenumber and 3 is the

I
0, -

. , '4 "', . ,' ., -:", , . - ' . . . ." """""."""-"-"-"- -"-' . . . . . . . . .. "-"-. . . . . . . ,- . .w ,, ," . '.,r ' - - - -. - . -. -,., . - -. .. .. ,', .. , . , ,, -. . .



" -6-

(perpendicular) spanwise wave number.

The model of Benney and Lin [14], 1960, attempts to describe the

Klebanoff type structure by considering the interaction between the TS

-. wave, k0 = (a,O), and two oblique modes of the Orr-Sommerfeld equation

(OSE), k, = (ct, +0) and k2 = ( , - ), with 13 as a free parameter.

Whether or not conditions for phase synchronization of the three modes

> exist is still a subject of debate [15]. The model due to Craik [16] uses the

77 TS wave and two oblique modes of the OSE, k1 = (c/2, +1*) and

k 2 = (a/2, -0*) to model the subharmonic structure. The value of /" is

chosen such that the modes k, and k2 have the same phase speed as the TS

wave, thus allowing for efficient energy transfer among the three modes. In

boundary layers, this model sometimes predicts correctly the value spanwise

undulation 3, but at other times, under similar experimental conditions, 3*

differs widely from the observed value. In plane Poiseuille flow the model

is inoperative for reasons of symmetry (171. Herbert and Morkovin [17] for-

warded a model composed of the TS wave and two longitudinal vortices of

the OSE equation, k1 = (0, +,3) and k2 == (0,- 3), to model a spanwise

periodic longitudinal vortex structure.

Other models have been developed, and the above list is by no means

exhaustive. However, along with the weakly nonlinear model the author

should present a guarantee of "completeness" of the model, i.e. show that
0
-'. ,,.: the modes considered are responsible for the observed phenomena. This

, >"task is difficult, it is rarely performed, and is the single greatest drawback of

the method.

The secondary instability model based on parametric resonance is

I .~? ~~
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intuitively simple to understand using physical arguments. In the first stage

of transition the presence of the primary wave brings about a redistribution

0of vorticity in the flow. When moving with the velocity of the wave, an

observer sees a periodically spaced, coplanar arrangement of vortex tubes,
sometimes referred to as a "cat's eyes" vorticity pattern. This arrangement

is highly unstable to small three-dimensional disturbances: a vortex tube

. .. slightly distorted along its length is alternatively placed into regions of faster

and slower moving fluid and undergoes rapid stretching. Furthermore, if

.

there is sufficient room, the arrangement is also unstable to small two-

dimensional disturbances which tend to amalgamate neighboring vortices

, into a larger vortex (vortex pairing). The mathematical analysis, hence, can

be divided into two parts; the conztruction of the the periodic flow arising

from the first stage of transition, and the analysis of a superimposed three-

dimensional velocity perturbation of amplitude sufficiently small for lineari-

S,) "\' zation. Due to the spatial periodicity of the bawic fow, tbe instability

mechanism is governed by a Floquet system.

N The first application of a Floquet system to boundary layer transition

seems to have been done by Maseev [18], 1968. However, his work went

unobserved, perhaps due to its short presentation and use of an unclear per-

turbation method for solution. Prior to this work, Floquet theory had been

used by Kelly [191, 1967, for the stability study of a inviscid free shear

* layer. He found the vortex pairing mode to stem from principal parametric

(subharmonic) resonance. Pierrehumbert & Widnall [20]. 1979. repeated

the analysis using a more accurate periodic flow model composed of an array

of Stuart vortices.

%
4,S,



. 'Observing that certain experimental setups for the study of Lamb-

Taylor instabilities excited periodically the flow, Nayfeh [211, 1969, derived

a Mathieu type equation to explain the overstability behavior. In the mid

and late seventies several researchers applied Floquet theory to model the

evolution of three-dimensionality in internal gravity waves. McEwan &

Robinson [12], 1975, studied parametric instability driven by time periodic

coefficients. Mied [22], 1976, refined the analysis by changing to a frame

moving with the periodic wave and solved for temporally growing distur-

bances, and extended the analysis to Rossby waves [23]. In both studies he

shows that "the parametric instabilities reduce to the nonlinear resonant

* interaction in the limit of vanishing basic state amplitude". Drazin [24],

1977, independently developed a Floquet formulation for this problem, and

in his work he related the parametric instability to resonant wave interaction

and to the catastrophe theory of Thom. He noted that the Floquet system

could be applied to other flows if certain general properties of waves are

satisfied.

In 1979, Nayfeh and Bozatli [25] studied the subharmonic vortex pair-

ing in a boundary layer using the method of multiple scales. They showed

that a large amplitude of the TS wave (29) is necessary to initiate the pair-

"" 'ing process. This fact is in agreement with the present results. However the

% -" analysis was only two-dimensional, while the most unstable subharmonic

• "modes are three-dimensional, with a spanwise wave number of the order of

the TS wave.

The application of Floquet theory to the stability study of equilibrium

states in plane Poiseuille flow was concurrently developed by Orszag [261



and Herbert [27], 1981. The former author used the method to verify the

* linear character of three-dimensional instability as revealed by the distur-

bances' exponential growth with time in a full numerical simulation of the

Navier-Stokes equation. While Orszag focused on large amplitude equili-

brium states and subcritical instability, Herbert performed a thorough inves-

I tigation in the case of small amplitude TS waves, and used the threshold

amplitudes, the 3 selectivity, and other characteristics of secondary instabili-

ties to clarify the experimental observations. He extended the model to the

Blasius boundary layer. By a careful study in the limit of vanishing TS wave

amplitude he was able to determine some circumstances in which weakly

nonlinear models were complete and others in which the models failed to

.1.? account for the dominant modes [4]. By means of a crude transformation

from temporal to spatial growth rates, the experimentally observed stream-

wise amplitude variation of the subharmonic was astonishingly reproduced

by the theory [21, confirming the parametric nature of instability in the

second stage of transition.
L

,S2

6' ' ' '

.I ..

r

0.°

0,,



GOVERNING EQUATIONS FOR SECONDARY

INSTABILITY

The following derivation is confined to steady, incompressible, constant

temperature shear-layer flows having a weak variation in the streamwise

coordinate. In the derivation we follow Herbert [1-5]. The analysis is

divided into two parts: the construction of the periodic basic flow and the

investigation of superposed secondary disturbances with amplitudes

sufficiently small for linearization.

1. Construction of the Periodic Basic Flow
4.

We consider the flow over a semi-infinite plate at an angle P,r/2 to the

free stream. Let X denote the distance from the leading edge along the

plate, Y the distance normal to the plate, and z the spanwise coordinate,

U. = k.,Yl( 2-P) the inviscid flow velocity at the surface, and X0 the loca-

- tion at which the stability analysis is performed. The undisturbed boundary

layer stream function is given by

'=-FS(M Y, = UJf(Y)6 6 (2-- (i)

where f (y) satisfies the Falkner-Skan equation

i"' + ff" + P(1-f 2) =-0 (2)

"* f(0)-- f'(0) = 0 *f'(y-o)-- 1 (3)

-10-
- 9.%



We use 6 and U, as characteristic quantities for nondimensionalization, and

define the Reynolds number by R = U,6/v. At sufficiently high R, pri-

mary disturbances appear, and during their initial stages of growth they are

well modeled by linear stability analysis. Only a general overview of the

analysis will be given here. For a detailed description see ,for example,

Betchov and Criminale [28]. We superimpose a small disturbance v1 on the

basic flow V,

v(X,y,z,t) - V(X,y) + A vl(X,y,z,t) (4)

SA << 1 (5)

and insert this compound flow into the Navier-Stokes equation. The non-

linear convective term A 2(vl1 7) v, is dropped in view of the small ampli-

tude of the disturbance. Collecting terms of order A one obtains linear

governing equations for v,

. vi + (v,. 7 )V + (V.V)v 1 =-7p, + -_7Vv (V)

7V'.= 0 (7)

subject to the boundary conditions v(X,0,z,t) - 0

v1(X, y---oo ,z,t) -= 0. Equation (6) is separable in t and z. Due to the

weak variation of the Falkner-Skan profile with X, we apply the parallel-flow

approximation and assume the profile to be locally one-dimensional,

* .:' V 0 (X 0 ,y). Then the disturbance equation becomes separable also in X, and

* the solution can be expressed with normal modes in the variables X , t

- and z. The error associated with the parallel-flow approximation is small in

profiles with favorable pressure gradients, P > 0, but increases in profiles

with adverse pressure gradients, P < 0. For a detailed description of the

0
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effect of non-parallelism in the analysis, see Saric & Nayfeh [291. As first

shown by Squires [30], the critical Reynolds number is associated with a

two-dimensional wave. This fact has lead to the incorrect popular belief that

* -.. two dimensional disturbances are most unstable at all values of wavenumber
*..

a, or frequency F. In our analysis, we restrict our attention to two-

dimensional TS waves since this type is most easily produced by the vibrat-

ing ribbon technique. The usage of oblique TS waves in our analysis should

" -require little modification. Thus, we drop the z dependence and recast the

equations in terms of the disturbance stream function ipl. The solution form

is given by

0 . = A(X) [ a()e -a(x Ct) + ia(y)e ia,(X-Ct)] (8)

The t denotes the complex conjugate, c is the phase velocity, a-= or7 +ia i

I and 0(y) are solutions to the Orr-Sommerfeld eigenvalue problem,

SD2-. iaR((U, - c)D - U" 0 (9)

0(0) = 0'(0) = 0 , €(-o) = €'(-o) = 0

L
where D - - a2 and a, is the streamwise wavenumber, ai is the

dy
2

growth rate. Note that R is a coefficient in (9), so that a = a (R) and,

consequently, a is also a function of the streamwise position X. The varia-

-:. tion of the amplitude is given by

A(X)- A;nexp(-jf ai(X)dX) (10)

where Ain is the TS amplitude at an initial location Xi . In the presence of a

TS wave of finite amplitude, the two-dimensional flow has the form

F . o.
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:j: v2(X,y,t) = Vo(y) + A(X) v,(X- ct, y) (11)

The eigenfunction 0(y) in (8) is normalized such that A measures thew streamwise rms fluctuation of the disturbance. As the primary disturbance

> .grows from infinitesimal to finite amplitude, nonlinear interactions begin to

modify both the mean and the disturbance profiles. However, the numerical

.- studies of Orszag [26] and Herbert [4] in plane Poiseuille flow have shown

that nonlinear modifications have negligible effect on the growth of secon-

dary instabilities. Thus, we keep the shape of the TS wave as given by the

linear analysis up through finite amplitude values. This approximation is

called the shape assumption.

0In view of the weak (viscous) growth of the TS wave in comparison to

the explosive (convective) growth of secondary disturbances, we neglect the

weak variation of the TS amplitude and consider, locally,

A(X) = A(.,.) = A,. One may view this approximation as an extension of

the parallel flow assumption to the TS wave, and as the Oh order approxi-

mation in a weakly non-parallel analysis. The time dependence is eliminated

by changing from a fixed coordinate system to a coordinate system moving

with the phase velocity of the TS wave, x = X - ct , and the flow

0 becomes periodic in the moving streamwise coordinate z,

i.(x,y) - Vo(y) + A 0 'i(x,y) (12)

Here, and elsewhere, the -symbolizes the periodicity of the function.

Fig. 3 illustrates the above steps. In a neighborhood of X both the

Falkner-Skan profile and the TS wave amplitude are assumed constant,

thereby extending the periodic flow from -c to cc. A detailed study of

2. IC

h .i
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temporally and spatially growing TS waves for Falkner-Skan profiles has

been presented by Wazzan et al. [31]. The periodic basic flow (12) can be

considered as known from any standard procedure for analysis of TS waves.

2. Secondary Disturbances. Linear model.

We study the evolution of secondary disturbances through a linear sta-

A,~ K; bility analysis of the periodic basic flow (12). A small secondary disturbance

V3 - (u 3 ,v3 ,tW3 ) is superimposed on the basic flow,

v(z,Y,z,t) = ' 2(X,y) + CV3(XY,z,t) , << 1 (13)

and the compound flow is inserted into the Navier-Stokes equations. The

$

i nonlinear convective term e2 (V3 7)v 3 is dropped in view of the small dis-

* turbance amplitude, yielding linear equations for v3,

a'V3 + (v2"v)V 3 + (V 3 "v)v 2 = -7P3 + !-'7V3 (14a)

7'V 3 = 0 (14b)

subject to the boundary conditions v3(X,O,z,t) = 0

v3 (x, y-oo ,z,t) = 0. The linear secondary stability problem, hence, is an

eigenvalue problem. Taking the curl of (14a) to eliminate the pressure,

introducing 77 P - ,v2 ' and the disturbance vorticity W3 -- ( ,73 ,'3),

and using continuity to eliminate the z-component of velocity w3, we obtain

, a system of of linear differential equations for U3 and v3,
$

R 89 at 17dV 2 +:
e;~~~ _,7 01 (2 _., 2L yo, o o-

A : a a, + T-) -- -

a~l aU3  Cv a~ 0v a)
W(2I,.+ -3Y -- U-37 V

a41 :8:(.a

A0-
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(U,-a 19113 XU. aV a 0 a2 V3 +

ax dy 9a

Note that al 3/az and Ol3/8z are expressible in terms of U3 and v3  These

"( equations have three important features: linearity, coefficients independent

of time and spanwise coordinate z, and coefficients periodic in x due to the

presence of 'i. The first two allow the use of normal modes in t and z,

V3(X,y,Z,t) = e'Oze O t v 3(zy) (16)

where the spanwise wavenumber 6 is real, and a is in general complex.

Floquet theory is fully developed in the context of ordinary differential

0equations, and is well documented in the literature (see for example Nayfeh

& Mook [321, or Arscott [33]). The extension to partial differential equa-
;1.

tions requires sophisticated mathematics, but seems to provide very similar

basic results. In our problem we assume a solution of Floquet form, since,

apart from the y dependence, the secondary disturbance equations are

essentially of Hill type in x. Letting y denote the characteristic exponent,

and X, = 21r/ a, the TS wavelength, we find two classes of solutions '% in

the form

17 3 (Z,y) C ' ' .(z,y) '1 (r + X.,y) if i(X, y) (17a)

v 3 (Xy) = &" #s(X,y) i,(z + 2X.,y) =i,(x,y) (17b)

where we denote if/(z,y) as the "fundamental" mode, and i,(z,y) as the

S. "subharmonic" mode. Being periodic, ife and i, can be represented by

V

:7. Fourier series,

..-

-'

*r .. 4 .% ,%* * ~ ~'~ .



000

~ i1 (x~y) E : v2,(Y)C a~a/2 (18a)

v1 (7,y) =2 n + (y)e'( + i)dz (18b)
n =_ 00

In principle, we can arrive at the same result by first expressing the solution

in a Fourier series in &,

v3(zY'Ztt) = a C te V ( (19)
n =-- 00

and then introducing the basic flow (12) and secondary disturbance (19)

into the equations (15). The terms multiplied by exponentials of like index

are collected and set equal to zero, two uncoupled infinite sets of equations

result for the fundamental components V2.(y) and subharmonic com-

ponents V2n + 1(Y). Due to the extensiveness of algebra involved, these

equations have been relegated to the appendix.

The solution forms (17ab) reproduce the experimentally observed

* .behavior of three-dimensional disturbances [1,3]. The fundamental mode

produces the X.-periodic "in-line" or peak-valley splitting pattern as

Iobserved by Saric & Thomas [9, Fig. 1]. The aperiodic term V0(y) in the

series (17a) gives rise to both a mean flow distortion and a spanwise

periodic longitudinal vortex structure. The subharmonic mode produces the

2X,-periodic staggered structure [9, Fig. 2, 3] and has no aperiodic term in

the series (17b). Both the fundamental and subharmonic modes can

undergo exponential growth in time or space, consistent with experience

from numerical simulations and experiments (see also [34]).

The secondary instability equations can be recasted with real

coefficients, since the Navier-Stokes equation involves only real values.

-S

S.." % ,, , , 2 - . , , ,. , ,,, - " , -,- ,, - , . - . - ., -. ., . . ' - - -,-- . ¢ ,
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Thus, the eigenvalues are either real, or complex conjugates. In the case of

complex eigenvalues special care must be taken in the computational tech-

nique to follow the birth and collapse of the complex parts. For real eigen-

values, the method of solution herein presented is valid, and the use of a

real formulation provides considerable savings in the numerical work.

,3. Spatial and temporal growth in a moving frame

Owing to the exponential dependence of v1 on both time and space, as

seen in (19), we are faced with the necessity of choosing one of the

exponents , a or "y, as the eigenvalue. In this manner we select between

temporally growing or spatially growing modes, in full similarity to the study

of TS waves. Temporal growth analysis is simpler and requires less compu-

tational effort since a appears linearly in the equations, while -y appears up

to fourth power. Moreover, a relation exists between the two types of

growth, and can be utilized to approximately transform temporal into spatial

growth rates (see below).

For primary disturbances, spatial growth is measured with respect to the

laboratory frame of coordinates. In order to arrive at a consistent formula-

tion of temporal and spatial amplification for secondary modes, we express

the velocity field (19) in laboratory coordinates

v 3(X,y,z,t) - E C X(e (20)
~4 n 1=- 00

To restrict the disturbance exclusively to temporal amplification we set

* the "spatial" exponent -f to zero and solve for the "temporal" exponent a

as an eigenvalue. The real part of a dictates growth and decay in both

0-A

%-' .. Z
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coordinate systems, hence the moving and the laboratory-fixed observer wit-

ness the same temporal growth. For purely real a, the mode is fixed in the

(x,y,z,t) frame and, hence, tuned with the TS wave. For complex a one

I. ~ obtains conjugate pairs, a = a,± ai, and the modes propagates upstream

and downstream in the moving coordinate system. In a laboratory fixed

frame the disturbances travel with a phase speed different from that of the

TS wave. Calculations have shown that at realistic amplitudes the dom-

inant, i. e. most unstable, mode is associated with a real eigenvalue.

A spatially amplified disturbance in the momvng coordinate system can

. -. be computed by setting a equal to zero and solving for -y as an eigenvalue.

To a laboratory-fixed observer, however, this disturbance mode exhibits

mixed spatial-temporal amplification, since in (15) both a and -y are multi-

plied by time.

The two cases of most interest are those of either temporal or spatial

amplification in laboratory coordinates. Indeed, experimental observation

shows that in boundary layers the growth of primary and secondary distur-

bances is only spatial.

In order to obtain disturbance modes with purely spatial amplification in

the laboratory frame, we note from (20) that the time-dependent factor

can be suppressed by choosing a =-c. In the moving frame, we

therefore search for solutions of the form
0

v 3 (-,zlt)- 'tcC Z V Inac (21)
fl -00

* and solve for -f as the eigenvalue. (Recall that computations must be carried

rz. out in the moving coordinate system for only there is the Floquet theory

V0
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directly applicable). We calculated all the information on spatially growing

modes in this report using this approach. Lastly, we note that setting

a = "yc + a produces disturbances growing spatially in X but having the

frequency detuned from the subharmonic by the value of a. In this case the

eigenvalue -y is complex, with the imaginary part producing the modification

of the streamwise wavenumber associated with the change in frequency.

-** ",t7

0

0
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I NUMERICAL ME-II ODS

The Falkner-Skan equation (2), the OSE (9) , and the secondary dis-

'.; &turbance equations (14) are numerically solved.

The Falkner-Skan profile f(y) is calculated using a 4t order Runge-

Kutta integrator coupled with a shooting scheme to satisfy the boundary

condition at infinity. An accurate value of f"(O), necessary to initiate the

shooting procedure, is obtained from a parabolic fit of f"(0) as function of

P from existing data [35], thus minimizing the number of iterations, and,

more importantly, avoiding the calculations of profiles with backflow [351 in

adverse pressure conditions, -0.198 < P < 0.

For the fundamental and subharmonic profiles (18) the lowest Fourier

truncation is used: v_2,vo,v 2 for the fundamental, and v..,vl for the

subharmonic. The dominance of the first terms in the series and the small

error of the truncation have been proven in previous works [36], [37]. Both

the OSE and the secondary disturbance equations are solved by transform-

ing the differential equations into an algebraic form through the use of a
& spectral collocation method with Chebyshev polynomials [381. In view of

the finite domain of definition for Chebyshev polynomials, the semi-infinite

domain YE(0,oc) is mapped into E[I,0) by the transformation

--= -- ,yo. Letting K denote the number of collocation points used in

'the analysis, one chooses the value of y0 such that half the collocation
A..

0- 20 -



-0r

63 " -21-

the bplayersislesn
Spoints k = Cos(2K+2 ) are placed inside the boundary layer displacement

thickness, wherein the disturbances undergo rapid change.

Without loss of generality, we use the subharmonic instability problem

to discuss in detail some aspects of the numerical method. We approximate

the eigenfunctions V, = (u, , v,,) in series expansion (18) by a finite series

of odd Chebyshev polynomials,
:',-' + I K + 2

-- , a,,kT 2 k+l() v (g) = , b,1T 2 1 + 1 (q) (22)
k=1l 1=1

The use of only odd polynomials, all of which vanish at 0 = 0, causes the

boundary conditions at that end, which is the image of y = oo, to be

automatically satisfied. Substituting the Chebyshev series representation of

the velocity components into the governing equations and solving the equa-

tions at the K collocation points results in a 4K row by 4K + 6 column

algebraic system for the unknown coefficients ank and b,.. The system is

made solvable (square matrix) by the addition of the algebraic form of the

six boundary conditions at -1, which is the image of the wall at y = 0,

u~0,dv.

S--= 0 , v, = 0 ,L d= 0 (23)

_*| _ For elegance, and computational simplicity, the "chain rule terms" arising

from the algebraic mapping are incorporated in the definition of the deriva-

tives of the Chebyshev polynomials. The ability to do this is based, clearly.

on the linearity of the equations; for example,

dv, -2 dv d2E=dy Yo 4 YO dg

= Z b,- d~ ¢T1 ) (24),id
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.. The advantage of solving the problem in its original boundary value

format, versus solving it via a shooting technique, is great. A global eigen-

value search procedure, such as EISPACK (Smith et al [39]) can be applied

to the algebraic system to obtain a complete spectrum of the elgenvalues at

new locations in the multidimensional parameter space (a,,3,RA). Choos-

.ing from the global list a most interesting eigenvalue, one can then compute

its variation during a local walk in the multidimensional space. A Newton

iteration procedure is used, which computationally less demanding: order

y.. (4K+6)3 versus order (4K+6) 4 for EISPACK.

A discussion of the local procedure can be easily done by introducing

the following notation. We represent the algebraic formulation -of the prob-

lem by

G[y] = 0 (25)

.~ . where y is the p-dimensional vector composed of the unknown coefficients,

y = (a Ik , b 11 , a-_Ik , b-_11) (26)

k= 1K+1 -1 ,K+2 p=2(K+1) +2(K+2)

- and G : RP-R P is the linear operator, acting on y, constructed by the spec-

4 -. tral collocation method. The eigenvalue a appears linearly in G, while -f

appears up to fourth power. For generality, we let X denote either of the
eigenvalues and indicate the functional dependence of G on X by writing

GX.

The local procedure is based on the property that the eigenvalue X and

the eigenvector y are smooth functions of the parameters (a . 3 , R , A).

Thus, given an exact pair X0 YO at (a0 ,0 RO A 0 ) we search for

PR
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X*,y* at (ce +~a,3 0 +4, 9Ra +aI? ,, +a.A) viaNewon iteration.

To this end, we augment the system by constructing

x =(y ,X) xE R P + 1  (27)

and Fx : R P + 1.. RP + 1 is obtained by adding to G an eigenvector normali-

zation condition ( for example, setting the last coefficient, b- IL, equal to 1

). Note that F is not.a linear operator when X represents -y, i.e in a spatial

formulation. Via a Taylor series expansion we write,

0, o-F(xo) + 7F.[x,-,Xo + o( Ix.- xo) (28)

where ,F is the Jacobian evaluated at x., acting on x. - x 0 . Omitting

the higher order terms we rewrite the equation in the form

vF.,_d[x,- x,_ 11 = F(x. 1 (29)

and solve for xL iteratively. As written, the Jacobian is updated at each

. :iteration, yielding a convergence rate of second order at a computational

cost of order p3 . Suppressing the updating to selected intervals gives a con-

*vergence rate of first order, but decreases the computational labor to order

p". Since 20 to 30 collocation points are necessary for good accuracy, the

value of p is between 86 and 126, so that the selected updating of the Jaco-

bian can greatly reduce the numerical work.

NS I ,.V
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RESULTS

- 1. Introduction

In low turbulence conditions, such as those that exist in free flight, the

-. ' subharmonic type of secondary disturbance is much more unstable than the

.q v. fundamental type (Kiebanoff structure) [40]. This fact, together with the

0* need of extensive computer time for a detailed study, led us to focus our

-.- attention exclusively on the subharmonic modes. The study of pressure

gradient on subharmonic disturbances is complicated by the functional

dependence of the eigenvalues X (growth rates) on a large number of

- -parameters,

SX= X(c, 13 , R A ,P) (30)

' ..: A significant portion of the research was employed for orientation in

this multi-dimensional space. Hence, as a preparation for discussion of the

results, it is useful to mention the most interesting choices of parameter

variation. The spanwise wavenumber selectivity, given by the variation of

growth rate with 3, addresses the question of two or three-dimensionality of
the disturbance. This variation is included in almost all the graphs. To take

into account the change of the nondimensionalizing variable 6 with stream-

wise location we replace 13 with the variable b

'- ".b =1000 j3 / R

-24-I.
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which describes a wave of fixed physical spanwise wavenumber as it travels

downstream. Other important parameters are the TS amplitude, the pres-

sure coefficient P, and the Reynolds number. The influence of at most two

-'-' parameters can be clearly represented in a graph. The following combina-

tions are presented:

a, c~RA fixed; bP varied.

- c,RP fixed; bA varied.

.- aP , A fixed; 6 , R varied.

- RPA fired; b ,R varied.

The value of a is a specified parameter in temporal analysis, and the TS

* wave frequency w, is given as the imaginary part of the eigenvalue of the

OSE. As done above, we define a new frequency , F, independent of the

-'G downstream change of the nondimensionalizing variable 6,

F =108 w/R

In spatial analysis, the value of the frequency F is specified, and the TS

I wave wavenumber a. is given as the real part of the eigenvalue of the OSE.

- Hence note that the functional dependence on -v in (30) is changed to F

when dealing with results from the spatial analysis. The spatial calculations

.. were conducted mainly at F = 124 and F = 83 to match experimental con-

ditions [81,[41].

.4.,

2. Effect of pressure gradient

We begin the discussion of results by presenting a comparison between

theory and experiment to validate the accuracy of the theoretical model.

Fig. 4 juxtaposes experimental [8] and theoretical results for the spatial

-. p2z
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amplitude growth of TS wave and subharmonic mode for the Blasius profile.

The initial TS amplitude is A. = 0.44% at branch I, (RI = 535) and

grows to 1.237 at branch II (R 1 = 855). A virtual leading-edge correction

of 20 cm has been applied to the experimental data in order to bring the

experimental R11 = 840 into agreement with the theoretical value, 855.

The initial subharmonic amplitude was chosen at Bi = 0.00126%6 in

order to match the experimental value of B at R1I. The subharmonic

amplitude is calculated using

inf-- f '7(s) 2 s
BO R. 2-

*" For data points at R > 700 the computed growth rate closely follows the

observed slope, confirming the parametric nature of subharmonic instability

in the initial stages of growth. The measurements at R < 700 were taken

shortly downstream of the vibrating ribbon (R =575) where neither the TS

wave nor the subharmonic mode are fully established. Fig. 5 shows the

selectivity of the subharmonic instability mechanism with respect to 5 at

R =700 and 853. Based on the maximum spatial growth rate, the theory

predicts b = 0.27 at R = 700 and b = 0.29 at R = 855. However,

natural selection of b in experiments also depends on the spectral content of

the background noise. The observed value of b = 0.33 is close to max-

imum amplification throughout the range of measurement.

-*-' Fig. 4 and 5 are almost indistinguishable from those given in a previous

* comparison [2, Fig. 9, 131 in which the growth rates are computed using a

temporal formulation and converted to the experimentally observed spatial

..*
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growth rates by means of a simple transformation. We devote an entire sec-

tion to the the comparison of spatial and temporal data.

A detailed collection of experimental data for transition over surfaces

with an adverse pressure gradient is, today, unavailable. This is unfortunate

because the anticipated increase in the error due to the shape and quasi-

static assumptions cannot be assessed by comparison. Indeed there is evi-

dence [42] that near separation the distortion of the mean flow is not negli-

gible. However, we expect the current results to capture accurately the

quantitative behavior of the growth rates.

The destabilizing effect of an adverse pressure gradient on the dom-

inant subharmonic mode is shown in Fig. 6. A decrease in the pressure

coefficient increases the growth rate as well as the range of unstable span-

wise wavenumbers. A likely consequence of this effect is the amplification

of a relatively narrow band of spanwise wavenumbers in regions of favor-

able pressure gradients, which sets the stage for the downstream develop-

ment. Most surprising in Fig. 6 is the sharp cutoff at & 0.05 for the

inflectional profiles, indicating strong damping of the vortex pairing mode at

a TS amplitude of 1%. Detuned modes (a complex) are less amplified than

LP the dominant mode in all profiles and at all values of the TS amplitude we

have investigated.

While the adverse pressure gradient enhances the growth rates of both

the TS wave and the subharmonic disturbance, there is only a moderate

effect on qualitative features. Dramatic changes occur, however, in the 4,

eigenfunctions, i. e. in the disturbance velocity profiles. A comparison of

mean and streamwise rms profiles is given in Fig. 7 for the Blasius profile.
ON
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P = 0, and in Fig. 8 for the Falkner-Skan profile near separation,

P = -0.18. Fig. 7 shows the agreement of the spatial result for the subhar-

monic mode with the experimental data [8]. Comparison with [2, Fig. 14]

also indicates that spatial and temporal results for the velocity profiles are
," hardly distinguishable. The position of the maxima with respect to the criti-

cal layer at y, (for the TS wave below, and for the subharmonic mode

above y,) is qualitatively unaffected by the pressure gradient. However, y,

in Fig. 8 is further away from the wall. A second maximum develops in the
. TS profile owing to the gradual changeover from viscous to vortical (inviscid

%

inflectional) instability. Velocity profiles at values of R = 1168 and

F = 83 are shown in Fig. 9. We note by comparison to the profiles at

R = 873 that only a small modification is brought about by a change in fre-

quency and Reynolds number. Experimental data on disturbance velocities

are scarce. At the present, we can only say that our results are not incon-

, \ sistent with measurements [42, Fig. 14] in the separating flow over an air-

foil.

3. Comparison of wall-bound and free shear layers

Boundary layer profiles near the point of separation exhibit high

A K inflectionality and maximum shear stress far from the wall, thus bearing

-, resemblance to a free shear layer. This observation leads one to enquire

* under which conditions the two types of flow share stability characteristics.

In the light of separation and reattachment we place particular attention on

" the preferred spanwise wavelength of subharmonic modes, in other words.

on the two-dimensional or three-dimensional nature of secondary distur-

r5
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bances.

The inviscid stability of a spatially periodic free-shear layer has been

'studied numerically by Pierrehumbert & Widnall [201. They found the layer

to be most unstable with respect to a two-dimensional (,3 = 0) subharmonic

mode, and the growth rate monotonically decreasing with increasing $ [20,

Fig. 5]. The disturbances undergo pure exponential growth and are tuned (a

real).

Growth rates for the pairing mode and a three-dimensional subhar-

monic mode in the Falkner-Skan profile at separation are shown in Fig. 10

as a function of the TS amplitude. Under these conditions, three-

0 dimensional secondary instability is dominant up to TS amplitudes of 18%.
- At low amplitudes, the vorticity concentrations generated by the TS wave

are too feeble to overcome the damping effect of the wall on the pairing

mode. Vortex pairing takes the lead at very large amplitudes of the primary

disturbance, but still competes with three-dimensional phenomena. This is

more clearly shown by the growth rates as a function of the spanwise

wavenumber b in Fig. 11. There is a strong similarity between the curve for

" -" A - 30% and the curve in [20, Fig. 5] for amplitudes in the same range.

Note, however, that the neglection of nonlinear terms under the shape

assumption may be invalid at this high amplitude level. The effect of the

/" increase of vorticity on the streamlines can be seen on Fig. 12. At amplitude

of 1% the vorticity concentration at the critical layer is weak, creating a

streamline pattern greatly flattened by the presence of the wall. At ampli-

tude of 30% however, the effect of the wall is not pronounced and the

streamlines resemble closely those of a free vortex. This process is accom-

@ x



* panled by the stability changeover to a basically inviscid vortical mechanism.

V As a further check that detuned modes are always less amplified than

j tuned modes a comparison of growth rates was made for different values of

a. For the separation profile ( P =-0.198 ), Fig. 13 shows the growth

rate of the most unstable fixed mode together with the two dimensional

( = 0) running mode as a function of a. For the most unstable fixed

mode i3 varies from 0.34 at a = 0.5, to 0.08 at a = 0.05. Clearly, as a is

de r as d f om t e p e branch to the lower branch of the TS neutral

curve this mode always dominates in growth rate.

Since the large TS amplitudes required for the pairing mode to dom-

inate can hardly be reached by viscous growth, we can conclude that within

0 14 the entire attached boundary layer the development of secondary instabili-

ties, and hence the second stage of transition, will be dominated by three-

dimensional disturbances. Through this result it is fair to observe that the

- process of vortex pairing in the separated shear layer is controlled not by the

growth of vortex pairing prior to separation but by the amplitude growth of

the three-dimensional disturbances. This observation is substantiated by

experiments in free shear layers [431 in which vortex pairing was observed

to dominate only when the background disturbances where sufficiently low

(hence, low amplitudes of the three-dimensional disturbances in the boun-

dary layer over the splitter plate).

4. Temporal to spatial transformation for secondary disturbances

In view of the reduced computational effort needed for a temporal

eigenvalue search, as opposed to a spatial search, a natural interest arises in

LIkn -r
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a transformation relating the two types of growth rates.

Indeed, one may even hope for the existence of a simple and accurate

relation valid over a wide subdomain of the parameter space since, after all,

such is the case for primary (TS) disturbances ( Gaster's transformation

[441. For a transformation in non-parallel flows, see [451).

The transformation for secondary disturbances can be derived in a

straight forward manner, as shown below. Unfortunately, the transforma-

tion takes on a simple form only in regions near a neutral growth point,

where both growth rates are small. The transformation acquires an involved

form in regions of large growth rates, and the substantial amount of compu-

tation required may undercut its usefulness.S

In the moving coordinate system ( ,y,z,t) the velocity field solution to

the secondary disturbance equations takes the form

00ine
v3('Y'Yz't) - e Zeate' -o V.(Y)e' 6d  (30)

"0

where a and -y are the complex temporal and spatial growth rates, respec-

tively, and a and $ are the streamwise and spanwise wave numbers, respec-

tively. We recall that solutions with

*a a , + a i represent temporal growth M both

"- = 0 fixed and moving coordinate systems (31 a)

" - y+c represent spatial growth in fixed coordinates (31b)

The disturbance equations functionally relate the parameters -y,a,a, and 3

in the implicit form

r %
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F (yo,a,3) - 0 (32)

provided that all other parameters appearing in the equations, namely R,

frequency, T-S amplitude, and pressure coefficient P, remain constant.

: .- , We will henceforth assume that the polysurface described by equation

F is smooth and the partial derivatives with respect to its variables exist up

to the order required.

Seeking a transformation from temporal to spatial growth we re-write
-- I

(32) in the explicit form

= f(r), r = (a,a,)

We choose two points r, and rt E (a,a,3), and connect them with a

smooth path c (p) parametrized by p, with end points c (0) = rt and

c (1) = r, . The values of y at the two end points of the path are related

by the first fundamental theorem of calculus,

fgrad (F) t) dt (33)

12 o dp

This is a most general transformation. In the special case when r. and

rt correspond to spatial and temporal growth rates respectively, the end

0 "-i points are according to (31),

r, = (°'0 c,a,3) and rt (a',a,3)

0 where -fl is the spatial and a the temporal growth rate. The path c (p)

now keeps the value of a and constant, and (33) reduces to

"V 0 f - Y" + i da. (34)

rU,
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where use has been made of the Cauchy - Riemann condition

a = + i - i (35)aa aa r aa, o'ico i

SellEquation (34) is the desired transformation. Note that the spatial eigen-

value, which is the unknown, appears on both sides of the transformation.

Next we want to reduce equation (34) to a form involving only data

" , obtained at, or near, the endpoint c (0) corresponding to temporal growth.

Therefore, we expand the integrand in a Taylor series about ar

.- ,~~(a,) = go +t gt(or, - a,*) + - -(ar, a cr )2" .. (
=a 2 +

where
000

go r (a ro) , go r(a 0) , etc. (37)

*1 Inserting the Taylor series into (5) we obtain the following approximate

transformations for real eigenvalues,"4 
°

C

,'O,°

-- "One terma " Y "']o f 90 da r

* y, 0 = ] (38a)

.c- -)
1'o

Two term •,7 = f (g0 + g9'o(O - o.)} do,

a t2+=af +ao 0 (38b)

0 where a, = goc 2

a= (go - g'oa')c _ 1
*-A':"

S
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a. 1 g', 0~),- gao,*

A three-term Taylor series yields a cubic algebraic equation for -y,, a four-

term series yields a quartic, and so on. Since approxim .ons of higher

order require numerous values of -1 = -y (a) near, and at, a 0 for the calcu-

lation of higher derivatives and also require numerical solution to the associ-

ated algebraic equation, high order approximations become too cumbersome

to calculate. The results for a one-term and two-term transformation are

given below. Blasius flow Re = 1168, F = 83 , cc 0.276 A 11o

Exact Values

4 0 0,

>10 2  >102

0.042 0.000 0.000

0.09 0.775 2.117

0.18 1.175 3.188

0.32 1.169 3.170

2i -y from approximate transformations

, . L- Error One term Error Two term Error

,, %>1o 2  % ><1o 2  %6:

* 0.042 0.000 0 0.000 0 0.000 0

0.09 2.207 4.25 2.094 1.1 2.114 0.1

" ' 0.18 3.345 4.93 3.063 4.0 3.137 1.6

. 0.32 3.328 4.98 3.031 4.5 3.112 1.S

0
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Clearly, for i3 near the neutral stability point, both the one-term and

two-term approximation yield good results. However, away from this point

the approximation becomes inaccurate. The error due to truncation is large

at higher values of -I' and a,, where the function y -y(a) exhibits

strong curvature. This can be seen in Fig. 14. The function -y = -(a) is

quasi linear at 3@ = 0.09 while for higher values of f3 the curvature under-

goes strong bending as it approaches the spatial endpoint -f Fc.

Under strong curvature numerous terms in the Taylor series expansion

. (34) must be kept for accuracy, and due to the accompanying increase of

computational work the transform loses its labor saving advantage. Expan-

0 sions other than a Taylor series could yield better convergence.
The plot of -= -y(,3) at fixed Re,c,F, and T-S amplitude is shown in

Fig. 15, along with the transformed values at three 3 locations. The zeroth

order approximation

a.= -- :(39)

S=-C

is the one used in previous works [2], and gives the error upper bound for

values of amplitude less than 27.

V
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CONCLUSI ON

~ The present investigation finds that, under free-flight conditions (low-

turbulence) , the secondary disturbances in boundary layers with favorable

and adverse pressure gradients (up to separation) behave similarly to those

4 in the Blasius boundary layer, with the most noticeable effect of the pres-

sure gradient being a decrease (favorable) or increase (adverse) of the

* disturbance's growth rate. In particular, the dominant disturbances are

K always three-dimensional and tuned (real eigenvalues) to the phase speed of

the TS wave. Only at experimentally unreachable amplitudes in the neigh-

0 borhood of 20-30%5 does the secondary stability of the boundary layer

become similar to that of a free shear layer, whereat the vortex pairing

dominates in growth. This fact is of importance, since it is conjectured that

the rapid evolution of three-dimensional disturbances prior to the separation

of the boundary layer may cause the separated shear layer to break down

1* n into wall-bound turbulence.

A comparison of growth rates obtained from a temporal analysis and a

j spatial analysis shows that the results from the two formulations can be

0 related easily, with an acceptable amount of error, but an involved transfor-

mation is necessary for an accurate change. Thus temporal analysis remins

a useful tool due to its lower computational demand, and spatial analysis is

* of use when an accurate comparison with experimental data is needed.

5.,3 -38
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Due to a lack of experimental data for transition in boundary layers

with non-constant pressure gradient, a much needed comparison of theory

and experiment is not possible. Good agreement in the Blasius boundary

layer, however, suggests that at least qualitatively the presented results are

valid.



APPENDIX

L Herein we substitute the TS streamfunction 01 and the normal mode

form of the secondary disturbance (19) into the governing equations

S9.(15a,b), and arrive at the final formulation of the problem. First, we divide

the differential equations into a sum of operators acting separately on u and

~~V:

.: Equation (15a),

"2L(v) = [C)2( - 2V av + d 0 ov-") IR0X t d 2  aX

P iP, u)--- 02 l( a 2 u - 2 u + 2 u) + 2 o 27 a2Uax. vO 2 " O 2  
aY

2  9Z 2 "  axay ax ay

a7v2L 8u a____+ 2 + U 2a8 ax O1 a8

PV(V) = - a a 2 22  
0  v +  i O 2u

ax TYaya 8 t a y 8z2  ay

a2Va a2 a 821 a 8 2u b 82 u
72 axa 8T 2 axz

QVg) 0a aX a a2 , O O 2 l v 2 +2v a%

8: 8y::'Ox 8a2" 8: 8 :8  8 :8  8:2 8y2  8y2 8

• Equation (15b),

i-. .1.

-:-. . ' u -. .-." - (o- .----- .- +
. .

.. a4 at oX2 -4
0 17 g -C)a2V du, a~v
M(V) IR (g * ax ad a -a " dy az

io~ ~ ~l a,, :( ' q a o2)"-~ 2)+ 92V) a2u

av), a av a a2?b a2V a2v a2V a2') a1V
[ .~~~~ ~~~ T;(') -ay O O zy ) OX ay + aX

2 
a
y 2  rOz

" -38 -
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The general form (no truncation) for the TS wave streamfunction is

00
A 'Pme ~ (40)
M=- 00

The general form (no truncation) for the secondary disturbance equation is

V3 (z",yt) C ei'6z d te -z 00 V(y) e in2  (41)
n =- 00

where =a/2 and 7 = n (u 7 v,). Introducing (40) and (41) into equa-

tions (15ab) and collecting terms multiplied by exponentials with like index

* ~. ~yields the following infinite sets of equations,

Equation (15a),

.. L( v.1  + RAm [P'(OjMuj) + PU(0~m,vj)] =0 (42a)

Equation (15b),

MU(u.) + M'(v,) + RA [Q*(,Om,uj) + Q"(,vj)] 0 (42b)

where j n -2m

The infinite order system (42ab) must be truncated for computational rea-

sons. Under the shape assumption, we truncate the TS streamfunction (40)

0, to two terms; 0_1 and 01~, and for the secondary disturbance the lowest

tru ncatio n is use d; Y-2 , V, V2 for the K-type disturbance (fundamental).

and y_ , for the subharmonic disturbance. The system (42ab) separates

into two uncoupled equations for the K-type and the subharmonic distur-

b ance:

0

0~ .
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EQUATONS FOR K-TYPE

Equation (42a),

L(V2) + RAP(061 ,u0 ) + RAP'(01 ,v, 0
L(v0 ) + RAP(6 1 ,iU.2 ) + RAPv(0 1 ,v.. 2 ).

+ RAP'(O-1 ,U 2 ) + RAPv(O-lIV2) = 0

L(V-. 2) + RAP*(O-1 ,u) + RAPv(& 1 ,vo,) = 0

Equation (42b),

M'('U2) + MU(V2) + RAQ M (d1 ,u, + RAQ'(0 1,v, 0
SM"(u 0,) + Mll(v,) + RAQ'(0 1 ,U-2 ) + RAWv(0j,V-. 2 ).

+ RAQI(O-lU 2 ) + RAQ'(O-1 ,V 2 ) =0

M'U-. 2 ) + M"V- 2) + RAQ 3 (0- 1,u0,) + RAQv((0-,v,) =0

EQUAMINS FOR SUBHARMONIC

Equation (42a),

L(v 1 ) + RA Pu( 1 u.. + RA Pv q~v- 1) = 0

L(v-.,) + RAPU(0-piul) + RAP'(O-1 ,vl) = 0

Equation (42b),

M"l(ul) + M'(vl) + RAQ'(01 ,u...) + RAQV(tp 1 ,v-..) =0

MU ) + vu + RAQ~~ ' 1  + RQ( v 0
0 ,l



-41-

We now define the operators in terms of the normal modes variables. For

compactness we introduce the following abbreviations,

:k: Y v- " " + [

Mu:-,. (v,.) = ,,.'' + [, -R(V - ) +)Iv."

+ R3 2 U0 'v.

~~~~~pmun) ----m2a 2tkmu ,, + 2ia~m .

:-' ~PV(4.m.Vn) = tmct.m," + , - ']"

,- ~+ imaf(A,, + 2imc .)€m + Dm¢,IVn'

,. ~~+ [Dmcm'( fi +r h'L)- Om' a(imcafra+,2) -imt'12v

~~ Q~~(~m,~n) = mimAn+iyx)~ m(ic

.-' " = im +( ima + R)v" - );.'( ima + ,v,,'

v' "~~ A2 " v

,M.].,, Unt- &R.(U.. 7 aI nn

R-,32 u.t

0

0*O~n ~' nt+2mtm;nn

+\ im ( n j('T m )+i.O, ,

P (mV'=pn~~~i+Oi ma71V

+ mc A maS, , nv

+ Da.-+'rc)--n7~ioT+, MC(',2 U

Ca( .)=ina m..n+iMC.,U' ' Ma+ n nU
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F igu re 1. Effect of two-dimensional and three-
dimensional disturbances on a separating shear layer.
Top, vortex pairing and permanent separation. Bottom,
Lhircc-dimcnsional vortex stretching, and breakdowvn into
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Figure 4. Theoretical and experimental 18 amplitude
variation with R for (a) the TS wave (Ai,, = 0.44%) and

C :(b) the subharrnonic mode (B, = 0.00126%).
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F Figu re 5. Spacial growth rate -f versus spanwise
S wavenumber b for the conditions of Fig. 4. The TS

amplitudes are A = 0.74% at R = 700, A = 1.23% at
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1/ 1
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0 0.08 0.16 b 0.24 0.32 0.4

F Figu re 6. Spatial growth rate ~yversus spanwise
wavenumber b for varilous values of the pressure
coefficient P. R =1168. F= 83, .- V70%.
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Figure 10. Temporal growth rate a versus TS amplitude
A for tuned modes with 6 ==0(a) and b 0.36 (b).
P =-.198,? R 1000, a~ 0.5, F =245.
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TEMPORAL AND SPATIAL GROWTH

I
OF SUBHARMONIC DISTURBANCES

IN FALKNER-SKAN FLOWS

by

Fabio P. Bertolotti

Committee Chairman: Th orwald Herbert

Engineering Science and Mechanics

(ABSTRACT)

The transition from laminar to turbulent flow in boundary-layers occurs

L in three stages: onset of two-dimensional TS waves, onset of three-

N dimensional secondary disturbances of fundamental or subharmonic type,

and onset of the turbulent regime. In free flight conditions, subharmonic

disturbances are the most amplified.

Recent modeling of the subharmonic disturbance as a parametric insta-

bility arising from the presence of a finite amplitude TS wave has given

results in quantitative agreement with experiments conducted in a Blasius

boundary-layer. The present work extends the analysis to the Falkner-Skan

family of profiles, and develops a formulation for spatially growing

.. ,',4 . "t..,C , X~ -,' . - - - , , .s ,..".'' , ,'"' --. . "" J,, " " "" " '" ," Ze ' ,',. "',,"



disturbances to exactly match the experimental observations.

Results show that subharmonic disturbances in Falkner-Skan flows

behave similarly to those in a Blasius flow. The most noticeable effect of the

pressure gradient is a decrease (favorable) or an increase (adverse) of the

disturbance's growth rate. Due to the lack of experimental data, a com-

parison of subharmonic growth rates from theory and experiment is limited

to the Blasius boundary-layer. A comparison of results from the spatial for-

mulation with those previously obtained from a temporal formulation shows

the difference to be small. A connection between disturbance growth in a

separating boundary-layer profile and a free shear layer is presented. A

0modification of Gaster's transformation from temporal to spatial growth

rates for secondary disturbances is given.
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